alpine.vis package#

Subpackages#

Submodules#

alpine.vis.clustering module#

class alpine.vis.clustering.KMeans#

Bases: object

KMeans clustering algorithm. This class wraps the sklearn KMeans implementation and provides a simple interface for fitting and predicting clusters.

__init__(n_clusters, random_state=None)#
fit(X)#
fit_predict(X, new_shape=None)#
predict(X, new_shape=None)#

alpine.vis.pca module#

alpine.vis.pca.check_tensor_dtype(x)#
alpine.vis.pca.compute_pca_features(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#

_summary_

Parameters:
  • inr_features (_type_) – _description_

  • num_components (_type_) – _description_

  • signal_shape (_type_) – _description_

  • pca_preprocess_whiten (bool, optional) – _description_. Defaults to True.

  • min_max_normalize (bool, optional) – _description_. Defaults to True.

  • kwargs – keyword arguments for sklearn.decomposition.PCA

alpine.vis.pca.compute_pca_features_batch(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#

_summary_

Parameters:
  • inr_features (_type_) – _description_

  • num_components (_type_) – _description_

  • signal_shape (_type_) – _description_

  • pca_preprocess_whiten (bool, optional) – _description_. Defaults to True.

  • min_max_normalize (bool, optional) – _description_. Defaults to True.

  • kwargs – keyword arguments for sklearn.decomposition.PCA

alpine.vis.pca.compute_pca_layerwise(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#
alpine.vis.pca.normalize_fn(x, axis=None)#
alpine.vis.pca.return_as_torch(x)#

Module contents#