alpine.vis package#
Subpackages#
Submodules#
alpine.vis.clustering module#
- class alpine.vis.clustering.KMeans#
Bases:
objectKMeans clustering algorithm. This class wraps the sklearn KMeans implementation and provides a simple interface for fitting and predicting clusters.
- __init__(n_clusters, random_state=None)#
- fit(X)#
- fit_predict(X, new_shape=None)#
- predict(X, new_shape=None)#
alpine.vis.pca module#
- alpine.vis.pca.check_tensor_dtype(x)#
- alpine.vis.pca.compute_pca_features(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#
_summary_
- Parameters:
inr_features (_type_) – _description_
num_components (_type_) – _description_
signal_shape (_type_) – _description_
pca_preprocess_whiten (bool, optional) – _description_. Defaults to True.
min_max_normalize (bool, optional) – _description_. Defaults to True.
kwargs – keyword arguments for sklearn.decomposition.PCA
- alpine.vis.pca.compute_pca_features_batch(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#
_summary_
- Parameters:
inr_features (_type_) – _description_
num_components (_type_) – _description_
signal_shape (_type_) – _description_
pca_preprocess_whiten (bool, optional) – _description_. Defaults to True.
min_max_normalize (bool, optional) – _description_. Defaults to True.
kwargs – keyword arguments for sklearn.decomposition.PCA
- alpine.vis.pca.compute_pca_layerwise(inr_features, num_components, signal_shape, pca_preprocess_whiten=True, min_max_normalize=True, normalization_axis=(-1,), **kwargs)#
- alpine.vis.pca.normalize_fn(x, axis=None)#
- alpine.vis.pca.return_as_torch(x)#