alpine.dataloaders package#
Submodules#
alpine.dataloaders.bio module#
- alpine.dataloaders.bio.load_nii_gz(filename, data_key='f_data', squeeze_dims=True, normalize=False, normalize_method='minmax', return_as_torch=False)#
_summary_
- Parameters:
filename (_type_) – _description_
data_key (str, optional) – _description_. Defaults to ‘f_data’.
squeeze_dims (bool, optional) – _description_. Defaults to True.
normalize (bool, optional) – _description_. Defaults to False.
normalize_method (str, optional) – _description_. Defaults to ‘minmax’.
return_as_torch (bool, optional) – _description_. Defaults to False.
- Returns:
_description_
- Return type:
_type_
- alpine.dataloaders.bio.load_pdb(filename, model_index=1)#
Loading PDF file using PandasPdb
Code adapted from Biopandas and @jgbrasier https://medium.com/@jgbrasier/working-with-pdb-files-in-python-7b538ee1b5e4
- Parameters:
filename (_type_) – _description_
model_index (int, optional) – _description_. Defaults to 1.
- Returns:
_description_
- Return type:
_type_
- alpine.dataloaders.bio.normalize_fn(x, normalize_method='minmax')#
alpine.dataloaders.coordinate_datasets module#
- class alpine.dataloaders.coordinate_datasets.BatchedCoordinateDataset#
Bases:
Dataset
- __getitem__(idx)#
Returns a batch of coordinates based on the specified index.
- Parameters:
idx (int) – Index of the batch to be returned.
- Returns:
Batch of coordinates.
- Return type:
torch.Tensor
- __init__(grid_dims: tuple, bounds: tuple = (-1, 1), vectorized=True)#
PyTorch dataloader for generating coordinate datasets in batches.
- Parameters:
grid_dims (tuple) – Input d-dimensional grid dimensions.
bounds (tuple) – Bounds of the grid. Defaults to (-1, 1).
vectorized (bool) – If True, returns a vectorized grid of shape N x d. Defaults to True.
- build_coordinate_tensors()#
Builds coordinate tensors based on the specified grid dimensions. Used internally by BatchedCoordinateDataset.
- class alpine.dataloaders.coordinate_datasets.CoordinateDataset#
Bases:
Dataset
PyTorch Dataset for generating a grid of coordinates as input to the network.
- __init__(grid_dims: tuple, bounds: tuple = (-1, 1), vectorized=True)#
- build_coordinate_tensors()#
Builds coordinate tensors based on the specified grid dimensions. Used internally by BatchedCoordinateDataset.
- alpine.dataloaders.coordinate_datasets.unflat_index(index, shape_of_tensor)#
alpine.dataloaders.dataio module#
alpine.dataloaders.env module#
- alpine.dataloaders.env.load_nlcd(path, return_onehot=False, use_colormap=False)#
- alpine.dataloaders.env.nlcd_to_integer_index(nlcd_arr)#
- alpine.dataloaders.env.remap_nlcd(x)#
alpine.dataloaders.signal_dataloaders module#
- class alpine.dataloaders.signal_dataloaders.BatchedNDSignalLoader#
Bases:
Dataset
- __getitem__(idx)#
Returns a batch of signal data based on the specified index.
- Parameters:
idx (int) – Index of the batch to be returned.
- Returns:
Batch of signal data.
- Return type:
torch.Tensor
- __init__(signal: ndarray | Tensor, grid_dims: tuple, bounds: tuple = (-1, 1), vectorized: bool = True, normalize_signal: bool = True, normalize_fn: callable | None = None)#
_summary_
- Parameters:
signal (Any) – Indexible object containing the signal data. Can be numpy array, list, torch.Tensor, etc. Must be of shape grid_dims[0] x grid_dims[1] x … x grid_dims[n] x (optional channels).
grid_dims (tuple) – _description_
bounds (tuple, optional) – _description_. Defaults to (-1, 1).
vectorized (bool, optional) – _description_. Defaults to True.
normalize_signal (bool, optional) – Min max normalization of the signal. Defaults to True.
normalize_fn (callable, optional) – custom callable function to normalize signal. Function will accept the signal as an argument. Defaults to None.
- build_coordinate_tensors()#
Builds coordinate tensors based on the specified grid dimensions. Used internally by BatchedCoordinateDataset.
- setup_signal(signal)#
Sets up the signal for the dataset. This includes reshaping, normalizing, and converting to a tensor if necessary. Used internally by BatchedNDSignalLoader.
- class alpine.dataloaders.signal_dataloaders.NDSignalLoader#
Bases:
Dataset
- __getitem__(idx)#
Returns a batch of signal data based on the specified index.
- Parameters:
idx (int) – Index of the batch to be returned.
- Returns:
Batch of signal data.
- Return type:
torch.Tensor
- __init__(signal: ndarray | Tensor, grid_dims: tuple, bounds: tuple = (-1, 1), vectorized: bool = True, normalize_signal: bool = True, normalize_fn: callable | None = None)#
_summary_
- Parameters:
signal (Any) – Indexible object containing the signal data. Can be numpy array, list, torch.Tensor, etc.
grid_dims (tuple) – _description_
bounds (tuple, optional) – _description_. Defaults to (-1, 1).
vectorized (bool, optional) – _description_. Defaults to True.
normalize_signal (bool, optional) – Min max normalization of the signal. Defaults to True.
normalize_fn (callable, optional) – custom callable function to normalize signal. Function will accept the signal as an argument. Defaults to None.
- build_coordinate_tensors()#
Builds coordinate tensors based on the specified grid dimensions. Used internally by BatchedCoordinateDataset.
- setup_signal(signal)#
Sets up the signal for the dataset. This includes reshaping, normalizing, and converting to a tensor if necessary. Used internally by NDSignalLoader.